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Data acquired f r o m  a s a t e l l i t e  borne telescope-photomter sensit ive 

. t o  farr u l t raviolet  radiation i s  presented. The telescopic f i e l d  of view w a s  

about IT square degrees; the effective photometer band width and wavelength 

were 204A and h i j ( b f i  respectively. Assuming +/E(B-V) = 3.1 an6 E(B-V) = i 

an average extinction at h1376.A of 10.7 f 6 mag. w a s  found from the data. 

u l t rav io le t  color index, 

w a s  computed fo r  96 stars, and from these data together with a set of un- 

0 -- ,Q 

0 
An 

- V) ,  corrected for  i n t e r s t e l l a r  absorption ( T 3 7 6  

blanketed model atmospheres the derivation of a temperature scale w a s  

attempted. The r e su l t s  indicate a scale f r o m  2000 t o  3000 degrees lower 

than currently estimated. The effect of using a more appropriate l i ne  

blanketed model for  these purposes is b r i e f ly  discussed. 

. 
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INTRODUCTION 

The des i rab i l i ty  f’rom an astrophysical standpoint of measuring 
0 

stellar u l t rav io le t  fluxes a t  wavelengths less than 3OOOA, or below the  

lower l imi t  of atmospheric transmission, i s  quite generally recognized, 

and t o  date several attempts have been made v i a  rocket vehicles t o  secure 

such data (e.g., Alexander, Bowen, and Heddle, 1963; Chubb and Byram, 1963; 

Stecher and Milligan, 1962). 

extensive scan of the ce l e s t i a l  sphere, two telescope-photomters were 

mounted on board s a t e l l i t e  1964 83c and launched in to  a nearly c i rcular  

polar o rb i t  at about 1100 km al t i tude i n  December 1964. Thus, s i tuated 

w e l l  above the earth’s atmosphere the photometers executed a slow un- 

controlled scan of the ear th  and sky i n  which all pointing directions w e r e  

possible. 

of about n square degrees. 

record s t e l l a r  fluxes i n  t l e  band ?,1297A t o  ~1650~, and the preliminary 

r e s u l t s  of these measurements are reported herein. 

I n  an e f fo r t  t o  augment these resu l t s  by an 

For both photometers the optics defined a circular  f i e l d  of view 

The primary purpose of one photowter w a s  t o  
0 0 
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SA!I'ELLm DESCRIPTION 

The satellite w a s  magnetically s tabi l ized and carried with the 

photometers a Rubidium vapor magnetometer, two omi-directional pa r t i c l e  

radiat ion detectors, and several experiments designed primarily t o  afford 

useful engineering data. Figure 1 is a simplified drawing of the satellite 

i n  which the deploylnent of the principal components is  illustrated. The 

opt ica l  axes of the  telescopes were oriented normal t o  the s a t e l l i t e  mag- 

ne t i c  ax is  and thus i n  orb i t  w e r e  roughly normal t o  the loca l  geomagnetic 

f i e l d  vector. 

The dynamic behavior of the satellite w a s  i n  general composed of 

a ro ta t ion  imparted by the geomagnetic f i e ld ,  a ro ta t ion  about the satellite 

magnetic axis and a precession w i t h  a superimposed nutation of the magnetic 

axis about the geomagnetic f i e l d  vector. The complicated nature of the satel- 

l i t e ' s  motion makes theoret ical  predictions of the telescope a t t i tudes  Over an 

extended period of time very d i f f icu l t .  In  principle, however, it i s  possible 

t o  determine the a t t i t ude  at  re la t ive ly  short time intervals  knowing the mag- 

net ic  f i e l d  and sun vectors i n  a s a t e l l i t e  f ixed coordinate system together 

with the components of these same vectors i n  a convenient geocentric coordinate 

system. To this end a s a t e l l i t e  Cartesian coordinate system w a s  established 

using a number of solar a t t i tude  detectors (labeled i n  Figure 1 "Heliogoniometers") 

which were able t o  locate the sun vector t o  within 0.1 degree. Three vector 

magnetometers w e r e  mounted as nearly as possible pa ra l l e l  t o  the s a t e l l i t e  

axes. Making use of a l l  a t t i t ude  data together with theoret ical  values of 

the geomagnetic f i e l d  (Cain, Daniels,  Hendricks, and Jensen, 1965) the  s t e l l a r  
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aspect could be determined with an accuracy of about 1/2 t o  1 1/2 degrees. 

Telescope pointing informt ion  is, of course, unavailable by t h i s  method 

when the  sun i s  l o s t  t o  view fromthe satellite. As of now no attempt has 

been made t o  recover this information by an analysis of the satellite's 

dynamic behaviar, 

The angular veloci ty  of the telescope opt ical  axes decreased from 

an i n i t i a l l y  high value t o  about 1/5 degree per second. 

t h i s  slow scanning speed the photometer responses were integrated over a 

period of 1.23 seconds and w e r e  continuously transmitted every 1.31 seconds 

over a F'CM channel at  the rate of 195.3 b i t s  per second. The channel capacity 

f o r  each photometer w a s  13 b i t s  of d i g i t a l  information. 

Commensurate with 

Elec t r ica l  power w a s  provided by an array of solar ce l l s  i n  con- 

junction with nickel-Cadmium batteries.  

conditions it became necessary t o  duty cycle the photometer experimental 

package. This unfortunate circumstance, however, effected only the quantity 

and not the qual i ty  of photometric data. 

I n  minimum or near minimum sun 

I 

Telemetry reception was carried out by a network of NASA and AF'L 

stat ions;  and, f inal ly ,  tracking, a t t i tude  determinations, and data reduction 

w e r e  performed by the Applied Physics Laboratory. 
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A drawing of the photometer un i t  appears i n  Figure 2. 3ere is 

shown the disposition of the optical  systems, the photonreter detectors, a 

pa r t i c l e  background detector, an in-fl ight calibration mechanism, and neces- 

sary shielding. An exploded view illustrates i n  greater d e t a i l  a photometer 

detector assembly. 

i l l u s t r a t ed  unit  i n  such a way tha t  the electronics and the photometer com- 

prised a completely self contained experimental package. 

l i s t e d  the pertinent characterist ics of both photomters and the background 

detect  or. 

The associated electronics w e r e  mounted above the 

In Table I are 

Except for  the filters the telescope opt ical  systems w e r e  as 

ident ical  as possible. 

aperture of 2 5/8 inches and an f n&er of 2.29. 

nized and overcoated with MgF i n  the manner of H a s s  and Tousey (1959). As 

a resul t ,  a r e f l ec t iv i ty  t o  Lyma.n-a radiation a t  normal incidence of 78$ w a s  

achieved. 

which was coated simultaneously with the telescope mirrors. 

the t o t a l  angular field of view as defined by a circular  aperture i n  the  focal  

plane w a s  approximately 2 degrees. Light, having passed through the aperture 

encountered a crystal  f i l ter  of e i ther  LiF or  SrF 

i n  question. 

radiation of lO5OA and 1297A respectively, 

posure t o  sunlight w a s  taken the f i l t e r s  w e r e  displaced f r o m  the Newtonian 

focus as far as possible t o  avoid damage from loca l  heating. 

A Newtonian opt ical  system was employed with an 

The mirrors were alumi- 

2 

This value is  based on the measured r e f l ec t iv i ty  of a plane mirror 

For each telescope 

depending upon the photometer 2 

These f i l t e r s  defined lower wavelength limits t o  the transmitted 
0 0 

Since no precaution against ex- 
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Bendix resistance s t r i p  magnetic electron multipliers, Model number 

M3lO, were used as detectors. The "volume" photoelectric emission charac- 

t e r i s t i c s  of the Tungsten photocathodes determined the long wavelength threshold 

of the  photomter response, this latter quantity being about 1650~. 
6 photometers w e r e  operated i n  the pulse counting mode at  gains of about 10 . 

0 
The 

Each photomultiplier w a s  followed by an amplifier-discriminator conibination, 

the output of which led  d i rec t ly  t o  the interface electronics. Details con- 

cerning the operation of these resistance s t r i p  electron multipliers have 

been reported elsewhere (Heroux and Hinteregger 1960; Goodrich and Wiley 1961). 

Relative t o  t h e i r  use i n  the case at hand it i s  simply noted that f o r  cer ta in  

photomultiplier dynode s t r i p  voltages and amplifier gains a reasonably w e l l  

defined plateau w i l l  occur i n  a graph showing the integral  count as a function 

of the dynode s t r i p  voltage. The photomultipliers w e r e  operated i n  this 

plateau region i n  such a way that a change of 50 vol t s  i n  e i ther  the dynode 

or f i e l d  s t r i p  voltages would cause a t  most a 3.3% change i n  the integral  

counting rate .  The photomultiplier voltages were supplied with a long term 

s t a b i l i t y  be t t e r  than 1.M or t o  within a fluctuation of f 9.0 vol t s  at the  

most. Thus, uncertainties i n  the counting rates due t o  changes i n  the photo- 

multiplier voltages were considered negligible. 

Since the experimental package w a s  t o  be exposed t o  intense pa r t i c l e  

radiation i n  the trapped radiation zones, brass shielding about 1/4 inch thick 

surrounded almost en t i re ly  each combination of photomultiplier, c rys ta l  f i l ter  

and focal plane aperture, leaving a cone shaped opening for  the entering 

radiation. I n  addition, a background detector w a s  included ident ical  

rrrechanically i n  every way t o  the photometer detector assemblies and oriented 
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i n  an equivalent posit ion re la t ive  to  the  loca l  geomagnetic f i e ld .  The back- 

ground detector differed from the photometers i n  as far as it lacked an 

associated primary and secondary mirror system, thus creating a s l igh t ly  

d i f fe ren t  shielding canfiguration. An aluminum f i l t e r  located i n  the 

background detector i n  a posit ion corresponding that of the c rys ta l  filters 

i n  the photometers w a s  designed to compensate as much as possible fo r  t h i s  

difference. The electron and proton transmission character is t ics  of the 

aluminum f i l t e r  and thus the threshold sens i t i v i t i e s  of the background 

detector t o  these par t ic les  are l i s t e d  i n  the last column of Table I. 

Provision w a s  made f o r  a simple in- f l igh t  cal ibrator  which w a s  i n  

essence a small Cerenkov radiator with a mechanical shut ter  t o  regulate the  

emission of' light. The radiator  was constructed by simply holding two l i n e  

sources of SrW, contained i n  an aluminum block, close t o  two LiF  crystals.  

Electrons stopping i n  the crystals  generated u l t rav io le t  radiat ion which 

could pass through the crystals  and in to  the opt ical  system. The cal ibrator  

w a s  located at the front  of the photometer package i n  such a way tha t  light 

from one half of the cal ibrator  entered one telescope and l i gh t  from the  

other half  entered the adjacent telescope. Because of this arrangement a 

s ingle  solenoid operated shutter could be used t o  cal ibrate  both systems. 

The cal ibrator  afforded a limited usefulness, huwever, f o r  a large fract ion 

of the u l t rav io le t  l i gh t  generated w a s  l o s t  i n  the opt ical  systems before 

reaching the photomultipliers. As a result, the response of the s t e l l a r  

photometer, that is, the one employing a SrF f i l t e r ,  t o  the cal ibrator  

radiat ion alone w a s  roughly comparable t o  the background signal. Neverthe- 

l e s s  t h i s  photmeter yielded useful information when under calibration. I n  

2 
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t he  case of the LiF f i l t e r ed  photomter, however, the calibrator induced 

response w a s  completely l o s t  i n  the  signal generated by the ubiquitous 

L ~ x u I , - ~  Sky glm. 

Relative and absolute photometer s ens i t i v i t i e s  w e r e  made at the 

National Bureau of Standards on one photomultiplier i n  conibination with 

e i t h e r  a LiF or SrF2 f i l t e r .  A sodium sa l icy la te  coated photomultiplier 

with an approximately constant quantum efficiency (Samson 1964) w a s  used 

i n  the  usual manner t o  monitor the monochromator beam intensity.  The 

r e l a t ive  dependence of s ens i t i v i ty  on wavelength w a s  determined by comparing 

the monitor output with the photometer detector response. The absolute 

sens i t i v i ty  w a s  measured using a N i t r i c  Oxide ion chaniber as a means of 

cal ibrat ing the monochromator at Al254A. 

(Watanabe 1954) w a s  assumed. 

0 
A n  ionization efficiency of 74% 

After the f l i gh t  experimental  package had been launched in to  orbit ,  

a nearly ident ical  a l ternate  uni t  was calibrated at  the NASA Goddard f a c i l i -  

t i e s .  

beam of para l le l  monochromatic ul t raviolet  l igh t .  

determined using a calibrated EMR 5421io8 photomultiplier, and once again a 

sodium sal icylate  coated photomlt ipl ier  was  used t o  es tab l i sh  the re la t ive  

sensi t ivi ty .  Results from t h i s  masurement indicated an instrumental sensi- 

t i v i t y  reduced by a factor of 1.7 f r o m  the or iginal  value determined before 

launch. It i s  believed tha t  the second method of calibration contained 

fewer uncertainties than the first, and consequently the absolute value of 

the photometer s ens i t i v i ty  w a s  revised accordingly. 

I n  this measurement the ent i re  experimental package w a s  located i n  a 

The beam in tens i ty  w a s  
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Relative photometer detector performances for  other photomultiplier- 

f i l t e r  conibinations were determined a t  APL using a Cerenkw radiator similar 

t o  that described for use as an in-f l ight  calibration mechanism. 

t h a t  suf f ic ien t ly  large counting rates were obtained when a photometer-filter 

combination w a s  exposed d i rec t ly  t o  a cal ibrator  u t i l i z ing  a 10 microcurrie 

source of Sr' . Under these circumstances, negligible fatigue w a s  observed 

i n  the Cerenkw radiator.  

It w a s  found 

Q@ 

Figure 3 shows the resu l t s  of these neasurements f o r  the orbited 

The graph labeled B exhibits the dependence of the system photometers. 

s ens i t i v i ty  upon wavelength f o r  both the LiF and the SrF2 f i l t e r e d  photometers. 

I n  the latter case the sens i t i v i ty  function is  shown again on a larger  scale i n  

the graph labeled A. 

w a s  a var ia t ion i n  the effect ive wavelength and sens i t iv i ty  with stellar type. 

Using the  model atmospheres of Mihalas (1964) the  t o t a l  change i n  effect ive 

sens i t i v i ty  corresponding t o  a variation i n  effect ive temperature from 45,0000K 

t o  9,000°K w a s  found t o  be less than 4.5%. This small variat ion w a s  taken in to  

account i n  the data reduction computations. For the same temperature range the 

e f fec t ive  wavelength changes by about 12A. 

appearing i n  Table 1 are the average effect ive wavelength, 137&, and the 

c orre sponding effect ive sens i t i v i ty  . 

Because of the width of the sens i t i v i ty  f'unction there  

0 
The values fo r  these quantit ies 

0 

A cross t a l k  problem existed such t h a t  detection events i n  the back- 

ground detector effected the counting rates i n  both photometers. 

w a s  temperature dependent but never exceeded 9.2$ as measured i n  the laboratory. 

I n  practice the maximum observed cross t a l k  contribution t o  the stellar photometer 

response during star detection events w a s  16 counts per accumulation period. 

This ef fec t  

By 
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comparison the photometer response to  stars alone w a s  from 3 t o  960 times 

t h i s  number, and f o r  a large majority of cases the cross t a l k  contribution 

w a s  completely negligible. 

t i m e  of this as w e l l  as other contributions t o  the background signal, cor- 

rections could be made by simple extrapolation procedures. 

uncertainties a r i s ing  from this problem are considered unimportant. 

Because of the slowly varying behavior w i t h  

Consequently, 

The average temperature of the photomters and background detector 

w a s  71°F differing from this value by no more than f l l°F during the period 

of da ta  aquisition. Based on laboratory measurements, no signif icant  var i -  

ations i n  the photometer or background detector responses can be caused by 

these temperature fluctuations. 

The experimental package w a s  subjected t o  the usual vibration tests 

conducted i n  order t o  evaluate the effects  of the rocket launching on the  

equipment performance. No measurable change i n  the optical  system w a s  

observed. 

the p h o t o d t i p l i e r s  were subjec ted to  similar checks. 

w a s  unaffected the photomultipliers enjoyed no such immunity. 

the apparent detection efficiency t o  both electromagnetic and par t ic le  

radiat ion change, but it did so i n  as many different  ways as there were 

photomultipliers. The photomultipliers used i n  the  orbited experimental 

package were those effected least by simulated launch conditions. 

maximum observed sens i t i v i ty  fluctuation after several  vibrat ion tests w a s  

i n  the case of the photometers 1.4%; i n  the  case of the background detector 

2.4%. 

Previous t o  these tests a l l  the electronic components including 

While the  c i rcu i t ry  

Not only did 

The 

Of course, w h i l e  it is  impossible t o  knuw the f i n a l  e f fec t  of the 



launch upon the photometer and background detector s ens i t i v i t i e s  it seems 

reasonable t o  expect that changes i n  the sens i t i v i t i e s  f r o m t h i s  source w i l l  

be less than f of the prelaunch values. 
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Representative histograms of the raw data  appear in Figure 4. The 

abscissa is divided into uni t s  of twice the  photometer accumlation period, 

and the  number of counts recorded during the accumulation period is  plot ted 

on tine ordinste. In general, as is iiiulsti-ated by %lie reapmae di--mis, a 

star w a s  i n  the f i e l d  of view for a time suff ic ient ly  long t o  permit inte- 

grat ion of the signal several t i m e s .  From t h i s  data  an average integrated 

count could be found which was subsequently used i n  the determination of a 

stellar flux value. Conversely, the shape of a photometer response indicated 

unaxibiguouslywhether or not a star had been completely i n  the photometer 

f i e l d  of view. 

The background contribution t o  the photometer signal could be 

separated in to  two categories; the first being composed of undesirable 

sources roughly comparable t o  the s t e l l a r  response of i n t e re s t  both i n  

duration and i n  magnitude; the second including those contributions which 

varied slowly with t i m e  and usually w e r e  much smaller i n  magnitude than the  

stellar signals. I n  the first category were telemetry noise bursts which 

could be ident i f ied by inspection. 

entered the f i e l d  of view along with the source responsible f o r  the major 

p a r t  of the observed response. Sometimes this latter type of background 

contribution could be eliminated on the basis  of timing considerations, but 

usually it could not be eliminated a t  all.  For such cases i n  which the  

secondary source w a s  considerably fa in te r  than the primary one the uncertainty 

i n  the results included an estimate of the photoEter  response due t o  the 

Included also w e r e  those hot stars which 



secondary source alone. M o r e  often than not, however, the  en t i r e  star detection 

event w a s  discarded. 

I 
I 
I 

I n  the realm of the second category is l igh t  *om f a i n t  hot stars 
i 

integrated over the f i e l d  of view, l i gh t  fYom extended sources near the earth, 

scat tered sunlight i n  the photometer itself and as mentioned previouslythe 

very small contribution from cross t a lk  between the background detector and 

e i the r  photometer. 

r e l a t ive ly  high background signal typical of that due t o  sunlight scattered 

i n  the photometer. 

estimated by simply extrapolating the background s ignal  underneath the stellar 

response 86 i l l u s t r a t e d  i n  Figure 4 by the dashed l ines .  

made by simply subtracting the estimated background signal f’rom the  t o t a l  

average signa. Except for f a in t  s tars  the uncertainty i n  this procedure 

w a s  l e s s  than the observed fluctuations of the t o t a l  s ignal  which were i n  

general somewhat greater than t o  be expected s t a t i s t i c a l l y .  

suspected tha t  beyond ef fec ts  due t o  the appearance and disappearance from 

The i. Sco response pictured i n  Figure 4 exhibits a 

For these sources the magnitude of the background was 

The correction w a s  

It i s  strongly 

the f i e l d  of view of f a in t  stars there are fluctuations i n  the signal in- 

duced by inhomogeneities i n  the SrF f i l ter .  

While it w a s  d i f f i c u l t  t o  d i f fe ren t ia te  between the causes of 

2 

signal  f luctuations it w a s  possible t o  take account of these fluctuations 

i n  the f lux value uncertainty estimates. 

the t o t a l  signal w a s  l e s s  than tha t  t o  be expected s t a t i s t i c a l l y  the composite 

standard deviation, calculated f r o m  both the t o t a l  and estimated background 

counting rates, w a s  added t o  the uncertainty associated with the posit ion of 

the extrapolated background level. 

I n  cases where the fluctuation i n  

In cases where the photometer s ignal  
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f luctuat ions exceeded s t a t i s t i c a l  expectations the maximum observed deviation 

w a s  substi tuted f o r  the standard deviation of the t o t a l  signal.. 

t o  the uncertainties i n  re la t ive  flux values of lo$ w a s  considered r e a l i s t i c  

and therefore has been adopted. 

A lower l i m i t  

During calibration events the photometers received radiat ion f r o m  

the cal ibrator  for  usually five accumulation periods. 

corrections were made the counts i n  each accumulation period w e r e  averaged 

After background 

and the result i n  turn w a s  averaged with similar results from calibrations 

carr ied out during the same day. 

response is  plotted as a function of day number for a 118 day period follow- 

ing launch. The bars on a f ew of the points indicate the s ize  of the standard 

deviation. 

represents the  results of a similar cal ibrat ion procedure carried aut  i n  the 

laboratory on an al ternate  model of the photometer package. 

poor counting s t a t i s t i c s ,  the fluctuating background signal accounts fo r  the 

dispersion i n  the flight photometer data. 

photometer response is considered principally due t o  c rys ta l  degradation i n  

the calibrator.  The decay of the f l i gh t  photomter response i s  if  anything 

l e s s  than that of the ground based u n i t ,  and is  thought t o  arise f’rom the 

same cause. Thus, e f fec ts  such as decreases i n  the mirror r e f l e c t i v i t y  or 

the SrF2 f i l t e r  transmission, or changes i n  the detection efficiency of an 

electronic  nature are excluded. That is, the cal ibrat ion resu l t s  indicate 

t h a t  the s t e l l a r  photometer s ens i t i v i ty  did not change over the 118 day 

period following launch. 

I n  Figure 5 t h i s  corrected photormtter 

The sol id  line which has been normalized t o  the da ta  of day 35 

I n  addition t o  

The decay i n  the ground based 
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Fortunately, an additional check on this conclusion was available. 

During the course of gathering data  the photometer made multiple detections 

of the same star f o r  32 different  stars. I n  Figure 6 some of these stars 

are plot ted as points on a f l u x  vs. day diagram. The bars  indicate the un- 

cer ta inty i n  the stellar f lux  values. Apart from a v isua l  inspection of 

the  diagram a simple estimate of a change i n  the photomter s ens i t i v i ty  may 

be made by averaging the  observed changes i n  f lux  values between the 10 stars 

of Figure 6. 

toward smaller f lux values of 0 .q  during the 84 day period covered by the 

The result o f t h i s  procedure i s  an average net change with time 

measurements. I n  view of the foregoing evidence it is  fe l t  that the  s t e l l a r  

photometer s ens i t i v i ty  was constant t o  within s. 
cer ta in ty  is  a t t r ibu ted  t o  the stellar f lux  absolute values. 

I n  addition, a un- 

Table 2 contains the photometry results fo r  96 stars. Columns 1, 

2, and 3 contain a running nuniber, the HD nuniber, and the star name respectively. 

The spec t ra l  c lass i f icat ions are l i s t e d  i n  column 4. Morgan-Keenan types are 

used preferentially;  otherwise recourse i s  made t o  the HD spectral  c lass i -  

f ications.  Column 3 contains the apparent v i sua l  magnitude i n  the UBV s y s t e m  except 

where noted, and column 6 contains the B-V color indices. 

data  of columns 4, 5,  and 6 appear i n  column 7. 

References t o  the 

The values of v s i n  i, the  

observable component of the  rotat ional  velocity, are recorded i n  column 8 and 

are  a l l  taken f’rom the a r t i c l e s  of Slettebak (1949, 1954 , 1955, 1956). 

column 9 are l isted the values of the s t e l l a r  flux, F(1376), at the effect ive 

wavelength of h1376A. 

l i s t e d  i n  column 10. 

In 

0 An extreme ul t raviolet  color index (y - V)u  i s  376 
These values are uncorrected fo r  reddening and are 

calculated from the formula 
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0 
where F(3475) i s  the monochromatic flux at 15475A. 

ta t ions  it w a s  assumed; (a) t ha t  h5473A w a s  the  effect ive wavelength defined 

by the  V f i l t e r  of the  UBV system f o r  B type stars, and (b) that a star of 

V = 0 delivers t o  the ear th  above the atmosphere a flux of 4.0 x lo-’ ergs 

-’ 2-l at h’3473; (Code 1960). cm sec 

In making the  compu- 
0 

The nmibers appearing i n  the last -2 

column of Table 2 indicate the number of times the corresponding star w a s  

detected, the  letters r e fe r  t o  notes a t  the end of the Table. 

I n  order t o  make corrections for  i n t e r s t e l l a r  absorption the 

relat ionship between E ( 5  

one. That is  

- V )  and E(B-V) w a s  a s s w d  t o  be a l inear  376 

Using this equation the value of X w a s  determined f o r  eight pa i rs  of stars, 

those i n  each pa i r  being of the same spectral  type and luminosity class.  

Listed i n  Table 3 are  the stars selected for  the calculation of X, t h e i r  

c lass i f ica t ions  and the corresponding values of X where the in t r in s i c  (B-V) 

colors are taken from Johnson (1963) and the other necessary quantit ies fYom 

Table 2. 

X-value of Table 3 is  

An overall average i n  which equal weight i s  at t r ibuted t o  each 

X = 7.6 * 0.8 (S.D.). 
avg (3) 

N o  attempt was made i n  any of the calculations t o  ident i fy  different  values 

of X with different  regions of the sky. Accordingly, X w a s  used t o  correct 

a l l  data fo r  i n t e r s t e l l a r  absorption by mems of re la t ion  (2), and the  new 

values f o r  the extreme ul t rav io le t  colors (5 
Table 2. 

avg 

- V )  appear i n  column 11 of 376 



It i s  interest ing t o  compare these results with those of Boggess 

and Borgman (1964). 

= 1 mag. the extinction a t  A1376A as measured i n  the present experiment is 

10.7 f 0-6 (p.e.). Figure 7 exhibits t h i s  quantity together with the data  

Under the conditions tha t  $/E(B - V )  = 3.1 and E(B - V )  
0 

appearing i n  the paper of Boggess and Borgman. 

grain extinction curve No. 15 of van de Hulst (1949). 

determined herein f o r  E(1376) confirms the trend i n  the far u l t rav io le t  t o  

larger  extinction than t h a t  indicated by the i l l u s t r a t ed  theoret ical  relation- 

Plotted a l so  is  the d i e l ec t r i c  

Clearly the value 

ship. Recent measurements of the in t e r s t e l l a r  extinction carried out a t  15 

different  wavelengths by Stecher (1965) together with extinctions a t  A1314A 

A1427A calculated by Stecher from the data  of Chubb and Byram demonstrate i n  

greater  d e t a i l  the same general spectral  behavior. 

Stecher's value for  the extinction i n  the  neighborhood of h1376A, approximately 

10, and the  value quoted i n  the present paper is w e l l  within the estimated ex- 

0 

0 

The agreement between 
0 

perimental uncertainties. 

I n  recognizing the need f o r  a d i e l ec t r i c  material t o  increase the 

ext inct ion &we the van de Hulst values a t  short wavelengths, two explanations 

f o r  these observations have been put forth.  

t i o n  of Wichamasinghe (1963) relegates the ro le  of scat ter ing agent t o  composite 

carbon core-ice mantle grains. 

focused at tent ion on the d i e l ec t r i c  properties of graphite crystals  a r i s ing  out 

of t h e i r  anisotropic character. 

c rys ta l s  i n  space these authors suggest t ha t  the observed extinction may be 

One of these based on the sugges- 

I n  another approach Stecher and Donn (1965) have 

By assuming a random orientation of graphite 

accounted fo r  by carbon grains alone. 

I n  Figure 8 are plot ted the  u l t rav io le t  colors (y - V )  of stars 
376 

f o r  which the apparent visible magnitude V and the B - V color 
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index w e r e  available. The numbers beside a point ident i fy  a star by means of 

the running number of Table 2, The dashed l ines  i l l u s t r a t e  theoretical  ex- 

pectations based on the temperature scale of H a r r i s  (1963), and computed from 

the model atmospheres of Whalas i n  conjunction with the photometer sens i t iv i ty  

function. 

be explained i n  terms of the counting s t a t i s t i c s  there appears t o  be an in- 

t r i n s i c  dispersion as well. 

i 2 220 km sec 

the average except i n  three cases: No. 1, 7 C a s ;  No. 91, 5 Oph; and No. 64, 

While some of the spread i n  (y - V )  within a spectral  class can 376 

Those s tars ,  designated by triangles,  with v s in  

- V)  colors preferent ia l ly  more positive than -1 exhibit  (EL,- 376 

p C a r .  Although there is apparently no value of v s i n  i for  stars numbered 1, 

64, and 92 ( A  Pav) all are emission stars and are assumed t o  be rotating close 

t o  t h e i r  c r i t i c a l  velocit ies.  

the case of a star with a mass of 8M@, a polar radius of 4R@, and a rotat ional  

veloci ty  of 0.8 w - V) t o  a more posit ive 

value re la t ive  t o  the case i n  whichu, = 0 of about 0.24 mag. When the angular 

veloci ty  equals the c r i t i c a l  angular veloci ty  the corresponding change i n  

The results of Collins (1965) indicate tha t  i n  

one might expect a change i n  (y 
C 376 

- V )  i s  about 1-27 mag. This implies t ha t  those rotat ing stars which (Y376 
do appear t o  be represented by (y - V )  colors more posit ive than the 376 
average are rotat ing with veloci t ies  close t o  their c r i t i c a l  values. The 

anomalous character of the exceptions No, 64, p C a r  and No. 1 

seem t o  be al tered by the uncertainty i n  t h e i r  (y 
simply noted tha t  both are emission stars, the l a t t e r  being a she l l  star as well. 

C a s  does not 

- V )  colors, and it is  376 

The circles  appearing i n  Fig. 8 represent stars of luminosity classes 

I and 11. 

No. 50, t CMa, B3 I1 and No. 52, 7 CMa, B8 I1 probably r e f l e c t  a low value f o r  

Again the re la t ive ly  more positive values of (y - V) fo r  stars 376 
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log g. Stars  numbered 38 and 41 are 5 and 6 Ori  respectively, and since the 

r a t i o  R = A E B - V )  i n  t he  Orion be l t  region is  known t o  be different  from 

the  normal value (Johnson 1965) it is l i ke ly  tha t  the correction for  absorption 

J (  

between these stass and ear th  i s  inadequate; thus, t he i r  anomalously posit ive 

- V colors cannot be thought exclusively due t o  low surface gravities.  

- V) color 

Y376 

I n  Table 4 axe l i s t e d  36 stars from which a mean (y 376 
index w a s  determined fo r  each of 12 spectral  types. 

w a s  inversely proportional t o  the square of i t s  standard deviation, a d  the 

The w e i g h t  of each datum 

quoted uncertainty is  the standard deviation i n  the weighted mean. 

only stars of luminosity classes IV and V and luw v s i n  i values w e r e  used. 

Ideally, 

Because of the paucity of data, however, some compromises were made i n  this 

respect. Thus, there w a s  only one star available i n  classes Bg, B6, and 09.5 

the  lat ter being No. 36, 6 Ori  of luminosity class 11. I n  addition, many of 

the values of v s i n  i f o r  stars which w e r e  used i n  the averaging process are 

unknown. 

By making recourse again t o  the models of Hhalas effective tempera- 

tures may be found corresponding t o  the mean (? 

Following H a r r i s  the quantity 10 /Te i s  plotted as a function of the (B  - V)o  

color index i n  Figure 9, and a least squares f i t  t o  a straight l i n e  i s  obtained 

- V )  color indices. 
376 

4 

using data  f o r  types B0.5 through B9. 

may be determined. 

an A0 star w a s  made by simply extrapolating the s t ra ight  l i ne  f i t  t o  (B - V ) o  - 

0. The effective temperature f o r  07, 09.5, and BO stars were calculated 

For these types smoothed values of Te 

In  addition, an estimate of the effect ive temperature fo r  

- 

d i rec t ly  from the appropriate ( F V )  color index. These results which 

with the exception of spectral  classes 07 and 09.5 are intended t o  represent 
376 
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luminosity types IV and V are l i s t e d  i n  Table 5 together w i t h  those of H a r r i s ;  

they w e r e  a l so  used i n  generating the so l id  curve i n  Figure 8. The uncertainty 

i n  effect ive temperatures f o r  types 07, 09.5, BO, and B0.5 are derived d i r ec t ly  

from the stand- deviation i n  the weighted mean (y 
Similar calculations w e r e  made fo r  types B 1  tbrough B9 and the  results w e r e  

- V) color index. 
376 

average t o  produce an uncertainty of & 500°K. 

types B1, B2, and B3 an uncertainty of about rt 70O0K would be more appropri- 

It would s e e m  tha t  f o r  the 

ate;  as could have been expected the exqeriment w a s  singularly insensit ive 

t o  var ia t ions i n  the temperature parameter f o r  the high temperature models. 

For types A0 through B1 the  temperatures determined herein are from 2000 t o  

3000 degrees less than those of Barr i s ,  but are i n  good agreement with the 

temperatures reported by Stecher ( l 9 a ) .  

f o r  type A0 stars i s  40O0K less than the  temperature a t t r ibuted t o  Vega by 

Hanbury Brown, Hazard, Davis and Allen (1964).  The theoret ical  value of 

(Yj76 - V )  corresponding t o  T = 92OOoK i s  shown by a diamond symbol i n  

Fig. 8. 

The extrapolated value of Te = 8,80O0K 

e 
This discrepancy i s  within an estimated standard deviation of f 500°K. 

However, it may be noted i n  passing tha t  a redetermination of the bolometric 

correction fo r  Vega taking i n t o  account the e f fec t  of l i ne  blanketing i n  the 

far u l t rav io le t  might lead t o  a more posit ive bolometric magnitude than used 

by the preceding authors and thus a lower effect ive temperature. 

Likewise, f o r  a Bl.5 V star an interpolated value fo r  Te of 20,4W0K 

is  estimated whereas Mihalas and Morton (1965) have derived a model of a 

Bl.5 V star with l i ne  blanketing for  which Te = 21914'K. 

and the photometer s ens i t i v i ty  function a value of -3.80 mag. w a s  calculated 

f o r  (y376 - V )  which is  shown again by a diamond symbol i n  Figure 8 a t  type 

Using t h i s  model 
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Bl.5. This theoret ical  (y - V )  color falls close t o  the observed colors 

f o r  stars of types close t o  B1.5, and the difference of approximately 1500°K 
376 

‘ 

between the interpolated value and the theore t ica l  value of Te probably re- 

f l e c t s  t o  some degree the experimental e r ro r  as w e l l  as the e r ror  made i n  the 

smoothing procedure. I n  reference t o  the work of Mihalas and Morton, the 

question arises as t o  w*mL Yne e f f e c t  wou~d “oe if the preseat coiqxd.s~ns 

were based on the use of m o d e l s  incorporating l i n e  blanketing instead of 

those which did not. Using the blanketed m o d e l  as a guide it is  estimated 

that the effect ive temperatures would be increased Over those determined 

from the unblanketed models f r o m  TOO t o  800 degrees for  stellar ty-pes B1 and 

32. Unfortunately, the present experiment is -anable t o  indicate whether or 

not one should expect the effect  of l i n e  blanketing t o  be greater or smaller 

than t h a t  deduced from the model of Mihalas and Morton. This insens i t iv i ty  

arises i n  par t  f r a m  the  rather  broad photometer s ens i t i v i ty  f’unction which 

includes both deletions and additions t o  the unblanketed m o d e l  f lux and i n  

par t  f r o m  uncertainty i n  the absolute value of the photometer sensi t ivi ty .  

Nevertheless, the modification i n  the present theore t ica l  (y - V )  colors 376 
resul t ing f r o m  the use of a l i n e  blanketed model is i n  the direct ion of closer 

agreement with observation, and it is surmised that the introduction of l i n e  

blanketed models i n to  the analysis would result i n  stellar temperatures higher 

by amounts on the  order of the presently quoted uncertainties.  

It is, of course, impossible t o  acknowledge a l l  those who have 

contributed s ignif icant ly  t o  the completion of t h i s  experiment. Asking the 

indulgence of those whose names I omit, I would par t icular ly  l i k e  t o  recognize 

the  work of the following persons. M r .  D. S.  B e a l l  w a s  responsible for a 
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large par t  of the work connected with the use and calibration of the photo- 

multipliers. &. H, P. L i e  supervised the design and construction of the 

necessary electronic components as well as the environmental test procedures. 

The solution of the a t t i tude  problem w a s  due largely t o  the ef for t s  of Messrs. 

H. D. Black and G. B. Bush with a considerable portion of the programming 

responsibi l i t ies  for  both this problem and the reduction of data being 

successfully undertaken by Mrs. M. W. Jennings. Finally, I would l i k e  t o  

thank Dr. T. P. Stecher fo r  h i s  in te res t  i n  t h i s  work and especially f o r  h i s  

helpful comments and criticisms. 
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Notes f o r  TABLF, 2 

( a) A small letter v indicates a variable star. 

a double star. 

A capi ta l  D indicates 

(b) According t o  Slettebak (194) t he  H e l i u m  l ines  of t h i s  star are 

re la t ive ly  broad and shallow indicating moderate axial rotation. 

( 4  The magnitude appearing i n  column 5 i s  the apparent visual  magni- 

tude of the Revised Harvard Photometry system. 

Slettebak (1954) reports l i t t l e  or no component of axial rotat ion 

i n  ltne of s ight  for this star. 

(d l  
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TABLE 4 

- v), For 12 S p e c t r a  Types %376 The Mean Ul t rwio le t  Color Index 

wo. 

l7 
48 

37 

87 
94 

16 
47 

86 
80 

66 
77 
85 
92 
104 

36 
101 
79 
73 
31 
98 
76 
22 
59 

55 
64 
91 
2 
27 

83 

35 
72 

Star 

5 Fer 
SMOn 

6 O r i  

6 sco 
T SCO 

s Per 
f1 cxa 

sco 
a LUP 

n V e l  
6 Cen 
p sco 
N sco 
6 Lup 

0 Tau 
e1 sgr 
a Cen 
aMus 
T Aur 
t H e r  
T -  
p Tau 
e1 car 
6 V o l  
H V e l  
T H e r  
a Eri 
Eri 

90 Lib 

f3 Tau 
n Dra 

Type 

-4.83 * 0.27 
-4.69 * 0.16 
-4.44 jz 0.08 

-4.08 f 0.12 

-3.87 * 0.02 

-3.66 f 0.05 

-3.14 * 0.07 

-2.28 f 0.04 

-2.14 0.34 

-1.95 f 0.12 
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3 q E r i  
6 5 Tau 

v Eri I 8  75 Zrf 

8s, cp Her 

TABU3 4 (continued) 

Type (m1376 - 
B8 V 
B8 V -1.43 + 0.05 B8 V 
B8 v 
B9P -1.11 f 0.24 

35 
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Type 
Nsc 

07 

og. 5 

BO 

~0.5 

B1 

B2 
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TABLE 5 

Relationships Between Spectral Type and Temperature 

Effective 
Rami s 

30, OOo 

-- 
24 200 

22 100 

18,800 

emperatwe (OK) 
Experimental 

+ 7,000 - 2,100 

26,400 f goo 

23,200 f 900 

21,600 

20, loo 

16,900 

B5 

B6 

337 

B8 

B9 

A0 

Ef f e ctivc 
H a b i s  

16 400 

15 400 

14,500 

13t 400 

12,400 

10,m 

Temperature ( * K) 
Experimental 
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Fig. 1 A simplified diagram of s a t e l l i t e  l9& 83c. This satellite w a s  

magnetically s tabi l ized with i t s  magnetic axis para l le l  t o  the 

axis of symmetry. The optical  axes of the ul t raviolet  radiation 

photometers are normi t o t h e  satell i te magnetic axis. Tie dark 

areas i n  the Figure represent solar c e l l  arrays. 

Fig. 2 A simplified drawing of the u l t rav io le t  photometer unit .  Details 

may be found i n  the text .  

Fig. 3 Graphs i l l u s t r a t ing  the absolute sens i t iv i ty  as a function of 

wavelength for both photometers. 

SrF2 f i l t e r e d  photometer alone w h i l e  graph B exhibits t h i s  function 

f o r  both the LiF and SrF2 f i l t e r e d  photomters together. 

Representative histograms of raw data which show the number of 

counts recorded i n  1.23 seconds as a function of t i m e .  The abscissa 

is divided in to  units of twice the photometer accumulation period, 

2.46 seconds. 

Graph A shows t h i s  function fo r  

Fig. 4 

Fig. 5 Average number of counts recorded by the stellar photometer per 

accumulation p r i o d  when under calibration as a f'unction of day 

number. "he c i rc les  represent the experimental data, and the bars 

indicate the standard deviation. The sol id  l i n e  is  based on the 

periodic calibration of a nearly ident ical  p h o t w t e r  carried 

out i n  the laboratory. 



Fig. 6 Flux values fo r  10 stars masured by the  stellar photometer outside 

the earth 's  atmosphere plotted against the day on which the masure- 

ments w e r e  made. The bars indicate the standard deviation i n  the  

data. 

Fig, 7 Extinction as a function of inverse wavelength. The open c i rc les  

The represent data from the paper of Boggess and Borgman (1964). 

so l id  dot with e r ror  bars indicates the extinction and probable 

error  at  A1376A found i n  the  present work. 

theoret ical  curve No. 15 of van de H u l s t  (1949). 

0 
The sol id  curve is  the 

Fig. 8 mat of the u l t rav io le t  color index ( as a function of 

!hiangles represent s t a r s  with 

' ?L376 - 9, 
stellar spectral  classification. 

v sin i 2 220 km see-'. Circles represent stars of luminosity 

classes I and II. The numbers identif'y stars according t o  the 

running number of Table 2. The dashed l ines  indicate theoret ical  

relationships based on the models of Mihalas (1964) fo r  (a) log g = 

4.5, (b) log g = 4.0, (c )  log g = 3.5, (d) log g = 3.0, (e)  log g = 

2.0, and ( f )  log g = 1.0. The so l id  curve is based on the smoothed 

experimental temperature scale of Table 5. 

4 
Fig, 9 Plot of 10 /Te as a function of the in t r in s i c  color index (B - V)o. 

The effect ive temperature, Te, is  determined v i a  the m o d e l s  of 

Mihalas (1964) from the mean color indices, - V), of T a b l e  4. (T376  
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